OXIDATION STATE OR NUMBER (ON)

I. Rules
A. Algebraic sum of ON's of all atoms in a formula is zero for a neutral compound or equals the charge on the ion for an ion
B. ON for an atom of any uncombined element is zero $\left(\mathrm{O}_{2}, \mathrm{Na}, \mathrm{S}_{8}\right)$
C. Good metals (alkali and alkaline earth) always have their $\mathrm{ON}=$ group number (GN); Group 3 usually have $\mathrm{ON}=+3$ but +1 also known
D. Fluorine $\mathrm{ON}=-1$ always. Other halogens usually have $\mathrm{ON}=-1$ except in compounds with oxygen or other halogens when the oxidation number can be positive.
E. Hydrogen has $\mathrm{ON}=1$ except in metal hydrides when the oxidation number is negative.
F. Oxygen usually has $\mathrm{ON}=-2$ except in compounds with fluorine when the oxidation number can be positive and in compounds containing the $\mathrm{O}-\mathrm{O}$ bond. For peroxides ON $=-1$ and for superoxides $\mathrm{ON}=-1 / 2$.
II. Generalizations
A. Maximum oxidation number possible $=\mathrm{GN}(\mathrm{GN}-2$ next most common)
B. For nonmetalas and metalloids (group 4 and greater) minimum oxidation number $=\mathrm{GN}$ - 8
C. More electronegative element always has a negative ON where electronegativity increases across a period ($\mathrm{L}->\mathrm{R}$) and up a group; $\mathrm{S} \approx \mathrm{I}<\mathrm{Br}<\mathrm{N}<\mathrm{Cl}<\mathrm{O}<\mathrm{F}$
D. Total ON is conserved in a chemical reaction (allows one to balance redox reactions since oxidations and reductions must exactly compensate each other)
III. Uses
A. Determining oxidation numbers

1. peroxide, $\mathrm{O}_{2}^{2-}: 2 \mathrm{ON}(\mathrm{O})=-2=>\mathrm{ON}(\mathrm{O})=-1$
2. superoxide, $\mathrm{O}_{2}^{-}: 2 \mathrm{ON}(\mathrm{O})=-1 \Rightarrow \mathrm{ON}(\mathrm{O})=-1 / 2$
3. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}: 2 \mathrm{ON}(\mathrm{K})+2 \mathrm{ON}(\mathrm{Cr})+7 \mathrm{ON}(\mathrm{O})=2(+1)+2 \mathrm{ON}(\mathrm{Cr})+7(-2)=0=>$ $\mathrm{ON}(\mathrm{Cr})=+6$
4. $\mathrm{OF}_{2}: \mathrm{ON}(\mathrm{O})+2 \mathrm{ON}(\mathrm{F})=\mathrm{ON}(\mathrm{O})+2(-1)=0 \Rightarrow \mathrm{ON}(\mathrm{O})=+2$
5. $\mathrm{Na}_{2} \mathrm{H}_{3} \mathrm{IO}_{6}: 2 \mathrm{ON}(\mathrm{Na})+3 \mathrm{ON}(\mathrm{H})+\mathrm{ON}(\mathrm{I})+6 \mathrm{ON}(\mathrm{O})=2(+1)+3(+1)+\mathrm{ON}(\mathrm{I})+$ $6(-2)=0 \Rightarrow \mathrm{ON}(\mathrm{I})=+7$
6. $\mathrm{BaFeO}_{4}: \mathrm{ON}(\mathrm{Ba})+\mathrm{ON}(\mathrm{Fe})+4 \mathrm{ON}(\mathrm{O})=2+\mathrm{ON}(\mathrm{Fe})-8=>\mathrm{ON}(\mathrm{Fe})=+6$
7. $\mathrm{UO}_{2}^{2+}: \mathrm{ON}(\mathrm{U})+2 \mathrm{ON}(\mathrm{O})=\mathrm{ON}(\mathrm{U})-4=2 \Rightarrow \mathrm{ON}(\mathrm{U})=+6$
B. Nomenclature
8. metal ions and compounds named by putting $O N$ in parentheses as a roman numeral - exceptions: Group 1 and $2, \mathrm{Al}$ (understood to be +3), Zn and Cd (both known to be +2), and $\mathrm{Ag}(+1)$
a) Fe^{3+} is iron(III) ion so FeCl_{3} is iron(III) chloride
b) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is manganese(VII) oxide
c) mercury (I) fluoride is $\mathrm{Hg}_{2} \mathrm{~F}_{2}$
d) zinc nitride: $\mathrm{Zn}_{3} \mathrm{~N}_{2}$ but iron(II) nitride: $\mathrm{Fe}_{3} \mathrm{~N}_{2}$
9. all monatomic anions of nonmetals and metalloids named by adding suffix ide to root of element name; charge $=\mathrm{GN}-8$; have octet of electrons
a) Group 7: $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
b) Group 6: $\mathrm{O}^{2-}, \mathrm{S}^{2-}, \mathrm{Se}^{2-}$ (selenide), Te^{2-} (telluride)
c) Group 5: $\mathrm{N}^{3-}, \mathrm{P}^{3-}, \mathrm{As}^{3-}$ (arsenide), Sb^{3-} (antimonide)
d) Group 4: C^{4-} (carbide), Si^{4-} (silicide), Ge^{4-} (germanide), Sn^{4-} (stannide)
e) other: H^{-}(hydride), OH^{-}(hydroxide), CN^{-}(cyanide), N_{3}^{-}(azide)
10. oxoanions/oxoacides - anion has oxygen combined with another element; when only one oxidation state exists suffix ate/ic is used; with two oxidation states higher uses ate/ic and lower uses ite/ous suffix; when four different oxidation states exist for the element combined with oxygen the highest uses the prefix per and the lowest the prefix hypo - within a group the higher the oxidation number the more oxygen atoms
a) Group 7
XO_{4}^{-}(per...ate/per... ic)
halogens
XO_{3}^{-}(...ate/...ic)
XO_{2}^{-}(...ite/...ous)
XO^{-}(hypo...ite/hypo...ous)
b) Group $6 \mathrm{XO}_{4}^{2-}(\ldots$ ate/... ic) - sulf...; selen...; tellur...
$\mathrm{S}, \mathrm{Se}, \mathrm{Te} \quad \mathrm{XO}_{3}^{2-}$ (...ite/...ous)
c) Group $5 \quad \mathrm{XO}_{4}^{3-}(\ldots$ ate/... ic) - phosph...; arsen...; antimon...

P, As, Sb
d) Group 4
XO_{4}^{4-} (...ate/... ic) - silic...; german...
e) exceptions - 2nd period elements too small for more than three covalently bonded oxygen atoms
CO_{3}^{2-} (carbonate/carbonic acid)
NO_{3}^{-}(nitrate/nitric acid)
NO_{2}^{-}(nitrite/nitrous acid)
f) other - transition elements
MnO_{4}^{-}(permanganate)
CrO_{4}^{2-} (chromate)
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (dichromate)
C. Predicting likely formulas of binary compounds (ionic as well as covalent)

1. choose less electronegative element to play the role of the "cation" with $\mathrm{ON}=\mathrm{GN}$ ($\mathrm{ON}=\mathrm{GN}-2$ also common)
2. choose more electronegative element to be the "anion" with $\mathrm{ON}=\mathrm{GN}-8$
3. examples
a) 5th period oxides (all actually exist):
$\begin{array}{llllllll}\mathrm{Rb}_{2} \mathrm{O} & \mathrm{SrO} & \mathrm{In}_{2} \mathrm{O}_{3} & \mathrm{SnO}_{2} & \mathrm{Sb}_{2} \mathrm{O}_{5} & \mathrm{TeO}_{3} & \mathrm{I}_{2} \mathrm{O}_{7} & \mathrm{XeO}_{4}\end{array}$
b) binary compounds with nitrogen (again all exist):
$\begin{array}{lllllll}\mathrm{Li}_{3} \mathrm{~N} & \mathrm{Ba}_{3} \mathrm{~N}_{2} & \mathrm{BN} & \mathrm{Ge}_{3} \mathrm{~N}_{4} & \mathrm{P}_{3} \mathrm{~N}_{5} & \mathrm{~N}_{2} \mathrm{O}_{5} & \mathrm{NCl}_{3}^{*}\end{array}$
c) binary compounds with fluorine (all exist)
$\begin{array}{llllllll}\mathrm{CsF} & \mathrm{BeF}_{2} & \mathrm{AlF}_{3} & \mathrm{PbF}_{4} & \mathrm{AsF}_{5} & \mathrm{SF}_{6} & \mathrm{IF}_{7} & \mathrm{XeF}_{6}^{*}\end{array}$

* $\mathrm{ON}=\mathrm{GN}-2 ; \mathrm{NCl}_{5}$ and XeF_{8} do not exist
D. Estimating relative strengths of oxoacids (and acidic oxides)

1. same element, different number of lone oxygens (only bonded to one atom)
a) $\mathrm{H}_{2} \mathrm{SO}_{3}\left(\mathrm{SO}_{2}\right), \mathrm{ON}=4<\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{SO}_{3}\right), \mathrm{ON}=6$
b) $\mathrm{HNO}_{2}\left(\mathrm{~N}_{2} \mathrm{O}_{3}\right), \mathrm{ON}=3<\mathrm{HNO}_{3}\left(\mathrm{~N}_{2} \mathrm{O}_{5}\right), \mathrm{ON}=5$
c) $\mathrm{HClO}\left(\mathrm{Cl}_{2} \mathrm{O}\right), \mathrm{ON}=1<\mathrm{HClO}_{2}\left(\mathrm{Cl}_{2} \mathrm{O}_{3}\right), \mathrm{ON}=3<$ $\mathrm{HClO}_{3}\left(\mathrm{Cl}_{2} \mathrm{O}_{5}\right), \mathrm{ON}=5<\mathrm{HClO}_{4}\left(\mathrm{Cl}_{2} \mathrm{O}_{7}\right), \mathrm{ON}=7$
2. different elements, different number of lone oxygens
a) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{ON}=5<\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{ON}=6<\mathrm{HClO}_{4}, \mathrm{ON}=7$
b) $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{ON}=4<\mathrm{HNO}_{3}, \mathrm{ON}=5$
E. Redox reactions
3. best way to balance these reactions (easy! will do in CHEM 118) - can you imagine trying to get these coefficients by inspection:

$$
258 \mathrm{OH}^{-}+\mathrm{Fe}(\mathrm{CN})_{6}^{4-}+61 \mathrm{Ce}^{4+} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+61 \mathrm{Ce}(\mathrm{OH})_{3}+6 \mathrm{CO}_{3}^{2-}+6 \mathrm{NO}_{3}^{-}+36 \mathrm{H}_{2} \mathrm{O}
$$

2. determine what is oxidized/reduced, number of electrons transferred
a) assign oxidation numbers and determine what is oxidized/reduced
b) using stoichiometric coefficients, determine number of electrons transferred
1) $2 \mathrm{Na}(\mathrm{ON}=0)+\mathrm{Cl}_{2}(\mathrm{ON}=0) \rightarrow 2 \mathrm{Na}(\mathrm{ON}=1) \mathrm{Cl}(\mathrm{ON}=-1)$ OX: $\mathrm{Na}(0->1)$; RED: $\mathrm{Cl}(0->-1) ; 2$ mol electrons transferred
2) $\mathrm{C}(\mathrm{ON}=-4) \mathrm{H}_{4}(\mathrm{ON}=1)+2 \mathrm{O}_{2}(\mathrm{ON}=0) \rightarrow$ $\mathrm{C}(\mathrm{ON}=4) \mathrm{O}_{2}(\mathrm{ON}=-2)+2 \mathrm{H}_{2}(\mathrm{ON}=1) \mathrm{O}(\mathrm{ON}=-2)$ OX: C (-4 -> 4); RED: O (0 -> -2); 8 mol electrons transferred
IV. Comments
A. ON's are a formal way to keep track of electrons in a redox reaction - can be fractions
B. ON are assigned based upon a molecular or ionic formula - structure need not be given
C. The rules for determining ON's are equivalent to imagining that all bonds are ionic \Rightarrow one imagines that every element in the formula exists as the neutral atom - the "molecule" or "ion" is formed by transfer of valence electrons from the less electronegative element $(+\operatorname{sign})$ to the more electronegative element (- sign) as in ionic compounds

$$
\begin{aligned}
& \mathrm{H}(\mathrm{ON}=1) \mathrm{Cl}(\mathrm{ON}=1) \mathrm{O}(\mathrm{ON}=-1) \Rightarrow\left(\mathrm{H} \cdot \bullet \cdot \stackrel{O}{\mathrm{O}} \cdot \stackrel{\bullet l}{\mathrm{Cl}}:=\mathrm{H}^{+} \quad \mathrm{O}^{2-} \quad \mathrm{Cl}^{+}\right)
\end{aligned}
$$

