OXIDATION STATE OR NUMBER (ON)

I. Rules

- A. Algebraic sum of ON's of all atoms in a formula is zero for a neutral compound or equals the charge on the ion for an ion
- B. ON for an atom of any **uncombined** element is zero (O_2, Na, S_8)
- C. Good metals (alkali and alkaline earth) **always** have their ON = group number (GN); Group 3 usually have ON = +3 but +1 also known
- D. Fluorine ON = -1 always. Other halogens usually have ON = -1 except in compounds with oxygen or other halogens when the oxidation number can be positive.
- E. Hydrogen has ON = 1 except in metal hydrides when the oxidation number is negative.
- F. Oxygen usually has ON = -2 except in compounds with fluorine when the oxidation number can be positive and in compounds containing the O-O bond. For peroxides ON = -1 and for superoxides ON = -1/2.

II. Generalizations

- A. Maximum oxidation number possible = GN (GN 2 next most common)
- B. For nonmetalas and metalloids (group 4 and greater) minimum oxidation number = GN 8
- C. More electronegative element **always** has a negative ON where electronegativity increases across a period (L -> R) and up a group; $S \approx I < Br < N < Cl < O < F$
- D. Total ON is conserved in a chemical reaction (allows one to balance redox reactions since oxidations and reductions must exactly compensate each other)

III. Uses

- A. Determining oxidation numbers
 - 1. peroxide, O_2^{2-} : 2 ON(O) = -2 => ON(O) = -1
 - 2. superoxide, O_2^- : 2 ON(O) = -1 => ON(O) = -1/2
 - 3. $K_2Cr_2O_7$: 2 ON(K) + 2 ON(Cr) + 7 ON(O) = 2(+1) + 2 ON(Cr) + 7(-2) = 0 => ON(Cr) = +6
 - 4. OF_2 : $ON(O) + 2 ON(F) = ON(O) + 2(-1) = 0 \Rightarrow ON(O) = +2$
 - 5. Na₂H₃IO₆: 2 ON(Na) + 3 ON(H) + ON(I) + 6 ON(O) = 2(+1) + 3(+1) + ON(I) + 6(-2) = 0 => ON(I) = +7
 - 6. $BaFeO_4$: ON(Ba) + ON(Fe) + 4 ON(O) = 2 + ON(Fe) 8 => ON(Fe) = +6
 - 7. UO_2^{2+} : $ON(U) + 2 ON(O) = ON(U) 4 = 2 \Rightarrow ON(U) = +6$
- B. Nomenclature
 - metal ions and compounds named by putting ON in parentheses as a roman numeral

 exceptions: Group 1 and 2, Al (understood to be +3), Zn and Cd (both known to
 be +2), and Ag (+1)
 - a) Fe³⁺ is iron(III) ion so FeCl₃ is iron(III) chloride
 - b) Mn_2O_7 is manganese(VII) oxide
 - c) mercury(I) fluoride is Hg_2F_2

- d) zinc nitride: Zn_3N_2 but iron(II) nitride: Fe_3N_2
- 2. all monatomic anions of nonmetals and metalloids named by adding suffix ide to root of element name; charge = GN 8; have octet of electrons
 - a) Group 7: F⁻, Cl⁻, Br⁻, I⁻
 - b) Group 6: O^{2-} , S^{2-} , Se^{2-} (selenide), Te^{2-} (telluride)
 - c) Group 5: N³⁻, P³⁻, As³⁻ (arsenide), Sb³⁻ (antimonide)
 - d) Group 4: C⁴⁻ (carbide), Si⁴⁻ (silicide), Ge⁴⁻ (germanide), Sn⁴⁻ (stannide)
 - e) other: H⁻ (hydride), OH⁻ (hydroxide), CN⁻ (cyanide), N₃⁻ (azide)
- 3. oxoanions/oxoacides anion has oxygen combined with another element; when only one oxidation state exists suffix ate/ic is used; with two oxidation states higher uses ate/ic and lower uses ite/ous suffix; when four different oxidation states exist for the element combined with oxygen the highest uses the prefix per and the lowest the prefix hypo within a group the higher the oxidation number the more oxygen atoms

a)	Group 7 halogens	XO_4^- (perate/per ic) XO_3^- (ate/ic) XO_2^- (ite/ous) XO^- (hypoite/hypoous)
b)	Group 6 S, Se, Te	XO ₄ ²⁻ (ate/ ic) - sulf; selen; tellur XO ₃ ²⁻ (ite/ous)
c)	Group 5 P, As, Sb	XO ₄ ³⁻ (ate/ ic) - phosph; arsen; antimon
d)	Group 4 Si, Ge	XO ₄ ⁴⁻ (ate/ ic) - silic; german

e) exceptions - 2nd period elements too small for more than three covalently bonded oxygen atoms

 CO_3^{2-} (carbonate/carbonic acid) NO_3^- (nitrate/nitric acid) NO_2^- (nitrite/nitrous acid)

f) other - transition elements

 MnO_4^- (permanganate) CrO_4^{2-} (chromate) $Cr_2O_7^{2-}$ (dichromate)

- C. Predicting likely formulas of binary compounds (ionic as well as covalent)
 - choose less electronegative element to play the role of the "cation" with ON = GN (ON = GN - 2 also common)
 - 2. choose more electronegative element to be the "anion" with ON = GN 8
 - 3. examples

a) 5th period oxides (all actually exist): Rb_2O SrO In_2O_3 SnO₂ Sb₂O₅ TeO₃ I_2O_7 XeO₄ b) binary compounds with nitrogen (again all exist): Li₃N Ba_3N_2 Ge₃N₄ NCl₃ BN P_3N_5 N_2O_5 c) binary compounds with fluorine (all exist) CsF BeF₂ AlF₃ PbF₄ AsF₅ SF_6 IF_7 XeF_6^* ^{*}ON = GN - 2; NCl₅ and XeF₈ do not exist

- D. Estimating relative strengths of oxoacids (and acidic oxides)
 - 1. same element, different number of lone oxygens (only bonded to one atom)
 - a) H_2SO_3 (SO₂), ON = 4 < H_2SO_4 (SO₃), ON = 6
 - b) HNO_2 (N₂O₃), $ON = 3 < HNO_3$ (N₂O₅), ON = 5
 - c) HClO (Cl₂O), ON = 1 < HClO₂ (Cl₂O₃), ON = 3 < HClO₃ (Cl₂O₅), ON = 5 < HClO₄ (Cl₂O₇), ON = 7
 - 2. different elements, different number of lone oxygens
 - a) H_3PO_4 , $ON = 5 < H_2SO_4$, $ON = 6 < HClO_4$, ON = 7
 - b) H_2SO_3 , $ON = 4 < HNO_3$, ON = 5
- E. Redox reactions
 - 1. best way to balance these reactions (easy! will do in CHEM 118) can you imagine trying to get these coefficients by inspection:

$$258OH^{-} + Fe(CN)_{6}^{4-} + 61Ce^{4+} \rightarrow Fe(OH)_{3} + 61Ce(OH)_{3} + 6CO_{3}^{2-} + 6NO_{3}^{-} + 36H_{2}O$$

- 2. determine what is oxidized/reduced, number of electrons transferred
 - a) assign oxidation numbers and determine what is oxidized/reduced
 - b) using stoichiometric coefficients, determine number of electrons transferred
 - 1) $2 \operatorname{Na}(\operatorname{ON} = 0) + \operatorname{Cl}_2(\operatorname{ON} = 0) \rightarrow 2 \operatorname{Na}(\operatorname{ON} = 1)\operatorname{Cl}(\operatorname{ON} = -1)$ OX: Na (0 -> 1); RED: Cl (0 -> -1); 2 mol electrons transferred
 - 2) $C(ON = -4)H_4(ON = 1) + 2 O_2(ON = 0) \rightarrow$ $C(ON = 4)O_2(ON = -2) + 2 H_2(ON = 1)O(ON = -2)$ OX: C (-4 -> 4); RED: O (0 -> -2); 8 mol electrons transferred
- IV. Comments
 - A. ON's are a formal way to keep track of electrons in a redox reaction can be fractions
 - B. ON are assigned based upon a molecular or ionic formula structure need not be given
 - C. The rules for determining ON's are equivalent to **imagining** that all bonds are ionic => one **imagines** that every element in the formula exists as the neutral atom the "molecule" or "ion" is formed by transfer of valence electrons from the less electronegative element (+ sign) to the more electronegative element (- sign) as in ionic compounds

$$H(ON = 1)CI(ON = 1)O(ON = -1) \implies \left(H \bullet O \bullet CI \bullet H^+ O^{2-} CI^+ \right)$$
$$O(ON = 2)F_2(ON = -1) \implies \left(F \bullet O \bullet F \bullet F \bullet F^- O^{2+} F^- \right)$$